Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2234984

ABSTRACT

Published hypervariable region V-beta T cell receptor (TCR) sequences were collected from people with severe COVID-19 characterized by having various autoimmune complications, including blood coagulopathies and cardiac autoimmunity, as well as from patients diagnosed with the Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C). These were compared with comparable published v-beta TCR sequences from people diagnosed with KD and from healthy individuals. Since TCR V-beta sequences are supposed to be complementary to antigens that induce clonal expansion, it was surprising that only a quarter of the TCR sequences derived from severe COVID-19 and MIS-C patients mimicked SARS-CoV-2 proteins. Thirty percent of the KD-derived TCR mimicked coronaviruses other than SARS-CoV-2. In contrast, only three percent of the TCR sequences from healthy individuals and those diagnosed with autoimmune myocarditis displayed similarities to any coronavirus. In each disease, significant increases were found in the amount of TCRs from healthy individuals mimicking specific bacterial co-infections (especially Enterococcus faecium, Staphylococcal and Streptococcal antigens) and host autoantigens targeted by autoimmune diseases (especially myosin, collagen, phospholipid-associated proteins, and blood coagulation proteins). Theoretical explanations for these surprising observations and implications to unravel the causes of autoimmune diseases are explored.


Subject(s)
Autoimmune Diseases , Bacterial Infections , COVID-19 , Coinfection , Connective Tissue Diseases , Mucocutaneous Lymph Node Syndrome , Child , Humans , SARS-CoV-2 , Autoantigens , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta , Bacteria
2.
J Basic Clin Physiol Pharmacol ; 33(6): 727-733, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2089488

ABSTRACT

Idiotype-based therapeutics have failed to deliver their promise, necessitating rethinking of the concept and its potential to develop a viable immunotherapy method. The idiotype based hypothesis is discussed in this paper in order to produce effective anti-idiotype vaccinations. Polyclonal anti-idiotype reagents have been shown to be more successful in animal models, and a better understanding of the immune response in humans supports the idea that polyclonal anti-idiotype vaccines will be more effective than monoclonal-based anti-idiotype vaccines. This innovative approach can be used to produce therapeutic antibodies in a Biotech-standard manner. The idiotype network has been tweaked in the lab to provide protection against a variety of microbiological diseases. Antibodies to image-idiotype antigens, both internal and non-internal, can elicit unique immune responses to antigens. The current outbreak of severe acute respiratory syndrome 2 (SARS-2) has presented a fantastic chance to use idiotype/anti-idiotype antibodies as a protective regimen, which might be used to treat COVID-19 patients. The development of various effective vaccinations has been crucial in the pandemic's management, but their effectiveness has been limited. In certain healthy people, the development of viral variations and vaccinations can be linked to rare off-target or hazardous effects, such as allergic responses, myocarditis and immune-mediated thrombosis and thrombocytopenia. Many of these occurrences are most likely immune-mediated. The current analysis reveals successful idiotype/anti-idiotype antibody uses in a variety of viral illnesses, emphazising their importance in the COVID-19 pandemic.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Antibodies, Monoclonal/therapeutic use , Pandemics/prevention & control , Immunoglobulin Idiotypes , Antibodies, Anti-Idiotypic/therapeutic use
3.
Transl Med Commun ; 6(1): 18, 2021.
Article in English | MEDLINE | ID: covidwho-1371983

ABSTRACT

The idiotype network is experimentally modified to provide protective immunity against various microbial pathogens. Both internal and non-internal image-idiotype antibodies can trigger specific immune responses to antigens. The current outbreak of Severe Acute Respiratory Syndrome 2 (SARS-2) has provided a great opportunity to take advantage of idiotype / anti-idiotype antibodies as a protective regimen when no approved vaccine is available on earth. The current review identifies successful applications of idiotype/ anti-idiotype antibodies in various viral diseases and highlights their importance in COVID-19 pandemics. In the absence of vaccines and targeted therapies, polyclonal idiotype/ anti-idiotype antibodies against the viral structure may be a potential approach to the prevention and treatment of COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL